Milk Thistle: Its Anti-Tumor Potential

Christos Kazazis, MD, Eleni Geladari, MD, Kyriakos Trigkidis, MD, Natalia G. Vallianou, MS, MSc, PhD

ABSTRACT

Milk thistle has been used for treating liver disorders since approximately 2000 years. Silybum marianum and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds, which are extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly sili-bin A, sili-bin B, taxifolin, isosilibin A, isosilibin B, silichristin A and silidianin. Milk thistle has been suggested to inhibit cell proliferation and to induce apoptosis, while also having anti-angiogenic properties. Its mechanisms of action involve inhibition of tumor angiogenesis biomarkers (CD31 and nestin) and molecules regulating angiogenesis (VEGF, VEGFR1, VEGFR2, phospho-Akt and HIF-1a), while other pathways such as the Wnt/β-catenin pathway, cyclin-dependent kinases and MAPK have also been implicated in its actions. Ongoing research has focused on the improvement of milk thistle’s bioavailability and its probable use as an adjuvant in standardized chemotherapy in the near future.

INTRODUCTION

The Greek philosopher, physician and botanologist Theophrastus was the first to describe milk thistle, under the name “Pternix”, for its healing properties in the 4th century B.C. Milk thistle has been used for treating liver disorders since approximately 2000 years (Fig. 1).1 Pliny the Elder (23-79 A.D.) suggested that a mixture of honey and the plant’s juice could serve to “carry off the bile”.2 Silybum marianum and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds, which are extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly sili-bin A, sili-bin B, taxifolin, isosilibin A, isosilibin B, silichristin A and silidianin. In 1959, the first member of this family was discovered, sili-bin, which is the most extensively researched one. Sili-bin is a mixture of sili-bin A and sili-bin B in approximately 1:1 ratio.3-7

ANTICANCER ACTIVITY OF SILIMARIN, IN VITRO STUDIES

Silimarin’s non-toxicity for normal tissues, its lack of adverse side-effects even in high doses, and its being inexpensive and easily available have made silimarin an attractive candidate for combined use with doxorubicin in order to decrease adverse
side effects and increase treatment results of doxorubicin.8-11 It has recently been documented that silimarin has a synergistic effect on apoptosis induced by doxorubicin in human breast carcinoma cell line (MCF-7), thus allowing for a dose reduction of doxorubicin and minimizing doxorubicin’s adverse side effects.11 In addition, silibin alone has been demonstrated to induce apoptotic cell death in MCF-7 cells. Furthermore, the combination of silibin and UVB resulted in an additive effect on apoptosis in MCF-7 cells. These in vitro results are suggestive of the role of silibin as a supplemental agent for the treatment of patients with breast cancer.13 Also, the effect of silibin on human colon cancer HT-29 cells has been studied and the results have indicated a loss of cell viability that was time dependent.14 Reduction in serum prostate-specific antigen (PSA) levels has been proposed as an endpoint biomarker for hormone-refractory human prostate cancer intervention. Researchers have tested if silibin decreased PSA levels in hormone-refractory human prostate carcinoma LNCaP cells. Silibinin treatment of cells grown in serum resulted in a significant decrease in PSA together with an almost complete inhibition of cell growth by means of G1 arrest in cell cycle. Silibin-induced G1 arrest was accompanied by a significant decrease in the kinase activity of cyclin-dependent kinases (CDKs) and associated cyclins.15 The role of neo-angiogenesis in prostate cancer growth and metastasis has been well established, but the development of effective and non-toxic pharmacological inhibitors of angiogenesis still remains an unaccomplished goal. Immunohistochemical analyses have confirmed inhibition of tumor angiogenesis biomarkers (CD31 and nestin) and molecules regulating angiogenesis (VEGF, VEGFR1, VEGFR2, phospho-Akt and HIF-1a).16 It is widely known that the canonical Wnt/β-catenin signaling pathway has a crucial role in cell proliferation, migration, and differentiation.37 Data from the above-mentioned study have implicated silibin as a novel small molecule Wnt/β-catenin signaling inhibitor by suppressing Wnt co-receptor LRP6 expression at the transcription level, and that the anti-cancer activity of silibin has been related to this inhibitory potential on Wnt/LRP6 pathway.18 Treatment with active compounds of silimarain, isosilibin B and isosilibin A, has been demonstrated to result in growth inhibition and cell death together with a strong G1 arrest and apoptotic death in human prostate carcinoma LNCaP and 22Rv1 cells.19 In vitro studies have also shown that silibin inhibits constitutively active Stat3 and induces apoptosis in DU145 cells, while other studies have documented that silibin synergizes human prostate carcinoma DU145 cells with doxorubicin, cisplatin and carboplatin induced growth inhibition and apoptotic death.20 Synergistic effects of silibin with doxorubicin and cisplatin have also been reported in breast and ovarian cancer cell lines.21,22 To sum up, anti-cancer activity of silimarain has been demonstrated in human breast cancer, skin cancer, androgen-dependent and independent prostate cancer, cervical cancer, colon cancer, ovarian cancer, hepatocellular carcinoma, bladder cancer and lung cancer cells.20-24

\textbf{Anticancer Activity of Silimarain, In Vivo Studies}

The efficacy of silimarain has been demonstrated using various transgenic models. Further studies suggested the important role of silimarain in inhibiting the chemical- and UV-induced skin carcinogenesis.24 Recently, Gu et al have demonstrated that topical or dietary silibin treatment causes a strong protection against UVB-induced photo-carcinogenesis.
by inhibiting cell proliferation, inflammation and angiogenesis in SKH-1 hairless mice.25 It has also been suggested that dietary feeding of silibin prevents UVB radiation-induced skin damages including thymidine dimer-positive cells, proliferating cell nuclear antigen expression and apoptotic sunburn cells. Studies have shown that silibin in human colon cancer cell lines demonstrated inhibition of proliferation and induction of apoptosis by modulating the expression of CDKs, CDKIs, insulin-like growth factor (IGF)-1 and IGF binding protein-3.26,27 Anti-cancer properties of silibin have been documented in in vivo models of breast cancer and colon cancer.28,29 Dietary supplementation of silibin in human non-small-cell lung carcinoma A549 xenograft growth in athymic nude mice by exhibiting anti-proliferative, pro-apoptotic and anti-angiogenic properties against prostate cancer.23,24 Recently, dietary silibin has been shown to inhibit prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice by modulating the expression of CDKs, CDKIs, insulin like growth factor (IGF)-1 and IGF binding protein-3.26,27 Vinh et al have shown that administration of silimarim reduces the labeling index for BrdU and the cyclin D1-positive cell ratio in various bladder lesions.30 Chemo-preventive efficacy of silibin against lung cancer has been suggested by a study that found that silibin suppresses the growth of human non-small-cell lung carcinoma SK-H-1 xenograft model.25 It has also been suggested that dietary administration of silibin has resulted in inhibition of the advanced human prostate tumor xenograft growth in athymic nude mice by exhibiting anti-proliferative, pro-apoptotic and anti-angiogenic properties against prostate cancer.25,31 Recently, dietary silibin has been shown to inhibit prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice by modulating the expression of CDKs, CDKIs, insulin like growth factor (IGF)-1 and IGF binding protein-3.26,27 Vinh et al have shown that administration of silimarim reduces the labeling index for BrdU and the cyclin D1-positive cell ratio in various bladder lesions.30 Chemo-preventive efficacy of silibin against lung cancer has been suggested by a study that found that silibin suppresses the growth of human non-small-cell lung carcinoma A549 xenograft growth in athymic BALB/c nu/nu mice.31 Silibin also reduces systemic toxicity of doxorubicin with an enhanced therapeutic efficacy by modulating NF kappa B mediated signaling pathway in this model.26,27 Anti-cancer properties of silibin have also been documented in in vivo models of colon cancer. Silibin administered via feeding exhibited potent anti-proliferative and multi-targeted effects at the molecular level. The effective reduction of pre-neoplastic lesions by silibin has decreased the incidence of 3,2-dimethyl-4-aminobiphenyl (DMBA)-induced prostatic adenocarcinoma in male F344 rats.29 Studies have shown that dietary administration of silibin has resulted in inhibition of the advanced human prostate tumor xenograft growth in athymic nude mice by exhibiting anti-proliferative, pro-apoptotic and anti-angiogenic properties against prostate cancer.25,26 Recent-ly, dietary silibin has been shown to inhibit prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice by modulating the expression of CDKs, CDKIs, insulin like growth factor (IGF)-1 and IGF binding protein-3.26,27 Vinh et al have shown that administration of silimarim reduces the labeling index for BrdU and the cyclin D1-positive cell ratio in various bladder lesions.30 Chemo-preventive efficacy of silibin against lung cancer has been suggested by a study that found that silibin suppresses the growth of human non-small-cell lung carcinoma A549 xenograft model. Overall, the above-mentioned studies provide a rationale for silimarim’s utility in future clinical trials.

\section*{Silimarim in Clinical Trials}

The efficacy of silimarim is currently being evaluated in cancer patients alone or in combination with other chemotherapeutic agents. Several doses of silimarim have been tested. Silipide, a silibin formulation, was given orally to patients with colorectal adenocarcinoma at doses of 360, 720, or 1440 mg daily for 7 days and high levels of silibin were achieved in the colorectal mucosa of the patients.40 Researchers have also recently completed a phase I clinical trial with silibin in prostate cancer patients. Silibin phytosome (SiliphosR), a commercial preparation of silibin, at a dose of 13 g divided in 3 daily doses, appears to be well tolerated in patients with advanced prostate cancer.41 Now, they are starting a pilot Phase II clinical trial to estimate the effects of silibin administration on prostate cancer progression using surrogate biomarkers as endpoints. Silimarim has been used (along with soy, lycopene and antioxidants) in a phase III clinical trial to delay prostate specific antigen progression after prostatectomy and radiotherapy in prostate cancer patients.42 Chemotherapeutic agents provide significant protective effects against many cancers; however, it has been shown that hepatotoxicity is a frequent adverse side effect caused by these drugs. Studies have shown that milk thistle has been used in treatment of chemotherapy induced hepatotoxicity and has been found to protect the liver during chemotherapy. Invernizzi et al have shown similar results with the use of silimarim in a 34-year-old woman with promyelocytic leukemia. The investigators administered 800 mg/d silimarim during the patient’s methotrexate and 6-mercaptopurine chemotherapy. During the 4 months of treatment with silimarim, the patient had normal liver transaminase levels and there was no further interruption in her therapeutic process. Milk thistle supplementation in children with acute lymphoblastic leukemia (ALL) and higher hepatic toxicity has been related to decreases in serum transaminases and a greater than 50% reduction in total bilirubin.43 Studies have demonstrated that silimarim may play a role in adjuvant cancer therapy. In vitro studies have shown that silimarim increased daunomycin accumulation, potentiated doxorubicin toxicity and inhibited efflux of these drugs from cancer cells. In a nonrandomized study, patients with brain metastases receiving stereotactic radiotherapy with omega 3 fatty acids and silimarim had longer survival times and a decreased number of radio-necroses.44
Silibin is rapidly absorbed from the stomach, but absorption is low due to low water solubility. The use of labeled silibin in the rat has enabled to show that the intestinal absorption of 20 mg/kg amounts to approximately 35%. Peak radioactivity is found in the plasma 30 minutes after ingestion. Bioavailability is also low due to high reactivity with phase II conjugates of a natural active ingredient and a phospholipid, in ability following oral administration. Recently, the bioavailability of silibin in the colon tissue but poor levels into prostate tissue has enabled to show that the intestinal absorption of silibin is conjugated with sulfates and glucuronides. Because of the potential inactivation of CYP3A4 and CYP2C9, silibin should be carefully co-administered with drugs (e.g. nifedipine, metronidazole, irinotecan, indinavir), and should be cleared by drugs, especially in high doses. Elimination of conjugated and unconjugated forms is equally fast with a mean elimination half-life of 6.32 hours. Also, silibin’s excretion in the urine ranges from 1 to 7%. Bioavailability of silibin can be enhanced up to threefold eight hours after consumption of a phytosome form, i.e. a complex of a natural active ingredient and a phospholipid, in healthy individuals. Parenteral administration of silibin seems to be better, while using a phosphatidyl choline-bile salt-mixed micelles formulation. Silibin B and silichristin demonstrate nonlinear pharmacokinetics compared to the rest of silimarin’s compounds. This is attributed to the saturation of conjugating enzymes and delayed elimination as a result of the extensive entero-hepatic cycling of the aforementioned conjugates of the silibin compounds. Peak concentrations were achieved for all doses after 2 hours and silimarin compounds’ half-life ranged from 0.8 to 2.4 hours. The highest bioavailability was documented for silibin A at the 700-mg dose. Comparison of 3 silibin-containing preparations (liverman capsule, legalon capsule, and silimarin tablet) revealed best absorption and bioavailability for the liverman capsule.

Silibin is known to have poor bioavailability for two main reasons, its multi-ring structure that is too large to be absorbed by simple diffusion and its poor miscibility with oils and other lipids, severely limiting its ability to cross the lipid-rich outer membrane of the enterocytes of the small intestine. Comparative analyses of two clinical studies revealed high bioavailability of silibin in the colon tissue but poor levels into prostate tissue suggesting the organs specific differences in the silibin bioavailability following oral administration. Recently, the bioavailability of silibin was reported to be significantly enhanced when administered in beagle dogs as silibin-nanosuspensions. This study also suggests that uptake and bioavailability of silibin could be further enhanced through altering the nanoparticle size. To sum up, recent efforts towards increasing the bioavailability of silibin are really encouraging.

Despite the overall safety of milk thistle seen in these few human studies, there are still no clear data to suggest anti-cancer activity among patients with cancer. Longer-term toxicology studies of milk thistle have not shown evidence of cancer promotion and side-effects for milk-thistle components in human beings are usually mild (diarrhea, gastrointestinal upset, and transiently raised concentrations of liver enzymes).

Conclusion

Milk thistle has been suggested to inhibit cell proliferation and to induce apoptosis, while having anti-angiogenic properties, too. Its mechanisms of action involve inhibition of tumor angiogenesis biomarkers (CD31 and nestin) and molecules regulating angiogenesis (VEGF, VEGFR1, VEGFR2, phospho-Akt and HIF-1α), while other pathways such as the Wnt/β-catenin pathway, cyclin-dependent kinases and MAPK have also been implicated in its actions. In this view, the bioavailability of its major constitute silibin has to be improved in the near future, using forms such as nano-formulations for example. Nevertheless, several limitations should be mentioned and emphasized, including the lack of an official recommendation for its use, apparently due to lack of evidence-based information on clinical applications. Thus, on the basis of the existing data, milk thistle remains in the category of dietary supplements. Thus, the absence of adequate evidence for its recommendation as a treatment for cancer holds true for the time being. Further studies are warranted to further confirm or not milk thistle as a useful tool to decrease the adverse side effects of standardized chemotherapeutics.

Disclosure

There is no Conflict of Interest regarding this manuscript.

References

8. Dhanalakshmi S, Singh RP, Agarwal C, Agarwal R. Silibinin

