Pathogenesis of Helicobacter Pylori Infection: Colonization, Virulence Factors of the Bacterium and Immune and Non-immune Host Response

Konstantinos Papamichael, MD, PhD, EBGHF,* Gerassimos J. Mantzaris, MD, PhD, AGAF

ABSTRACT

Helicobacter pylori (Hp), a gram-negative, spiral-shaped bacterium is one of the most widely spread pathogens in humans, as it concerns half of the world population. Mechanisms that allow Hp to cause a life-long infection involve modulation of the immune response and host cellular processes which include activation of the innate immune response, resistance to phagocytosis, modulation of dendritic cell activity and regulatory T cells, and production of proinflammatory cytokines. This is accomplished via virulence factors such as colonization factors (a variety of adhesins), factors that allow it to evade host defence (flagella and motility, urease system, induction of hypochlorhydria) and factors that are responsible for tissue injury (heat shock proteins A and B, vacuolating cytotoxin A, neutrophil activating protein of Hp, and cytotoxin-associated gene A). The interaction between bacterial effectors, environmental factors (genetic susceptibility to infection) and factors that modulate the host’s response, such as polymorphisms in genes encoding cytokines or cytokine receptors, have been shown to influence the clinical outcome of Hp infection either towards peptic ulcer and/or cancer. Future studies, directed toward understanding interactions between Hp and immune cells in vivo, may lead to the development of novel therapeutic approaches for eradication of Hp.

INTRODUCTION

Helicobacter pylori (Hp) is a gram-negative, spiral-shaped pathogenic bacterium that colonizes the gastric epithelium and causes chronic gastritis, peptic ulcer and/or gastric malignancies including mucosa-associated lymphoid tissue (MALT) lymphomas, while most infected people remain asymptomatic.1 These diseases are determined by the relationship between virulence factors of bacteria, host factors such as genetic predisposition and immune response.1,2 Regarding genetic predisposition, polymorphism in the promoter region of interleukin (IL)-1 and IL-8 receptor have been associated with an increased incidence of atrophic gastritis and gastric cancer.3,4 Prevalence among adults is 70–90% in many developing countries and 25-50% in industrialized countries.5
After entering the stomach, Hp evades host defence, immunity and gastric mucosa, via virulence colonization and other factors (Table 1), including urease activity, motility mediated by the flagella, adhesins, membrane engraftment of cholesterol, vacuolating toxin A (VacA)-induced T-cell suppression, and metal acquisition proteins. After disruption of epithelial cell junctions, the bacteria can pass through the gastric wall facing direct immune response from neutrophils, lymphocytes, mast cells and dendritic cells. The innate immune response is mainly represented by Toll-like receptors (TLR) and nucleotide-binding oligomerization domain (Nod)-like receptors, that recognize their specific ligands, activate transcription factors such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein 1 (AP-1), cyclic adenosine monophosphate (cAMP) response element-binding protein 1 (CREB-1), and induce production of inflammatory cytokines such as IL-8, IL-12, IL-6, IL-1β, IL-18, tumor-necrosis factor-α (TNF-α) and IL-10. Interleukin-1β and TNF-α, which are produced locally in the gastric mucosa, are potent inhibitors of gastric acid secretion.

Table 1. Helicobacter pylori (Hp) related virulence factors and relation to disease

<table>
<thead>
<tr>
<th>Factors</th>
<th>Role</th>
<th>Disease</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>CagA</td>
<td>entry to GECs via type IV secretion system phosphorylation & binding to SHP-2 gastric cytokine production (IL-8) glycans biosynthesis in GECs</td>
<td>↑ risk for developing peptic ulcer or gastric cancer in Western populations 50 to 70% (+) of Hp strains</td>
<td>18,19</td>
</tr>
<tr>
<td>VacA</td>
<td>depolarization of the membrane induction of apoptosis inhibition of T-lymphocyte activation disruption of endosomal & lysosomal activity</td>
<td>50% (+) of Hp strains ↑ risk of peptic ulcer or gastric cancer in Western countries, Latin America, Middle East.</td>
<td>20-22</td>
</tr>
<tr>
<td>LPS</td>
<td>structural homology with Lewis blood group antigens X & Y stimulation of release of cytokines (lymphotoxin a, CCL19 and CCL21)</td>
<td></td>
<td>23,24</td>
</tr>
<tr>
<td>BabA (HopS)</td>
<td>adhesion to GECs</td>
<td>↑ risk of peptic ulcer and gastric adenocarcinoma</td>
<td>25-27</td>
</tr>
<tr>
<td>SabA & B (HopP)</td>
<td>adhesion to GECs activation of neutrophils</td>
<td>↑ risk of gastric cancer, intestinal metaplasia, corpus atrophy</td>
<td>26,28</td>
</tr>
<tr>
<td>HspA & B</td>
<td>adhesion to GECs</td>
<td>↑ risk of MALT lymphoma</td>
<td>29</td>
</tr>
<tr>
<td>AlpA & B</td>
<td>Adhesion to GECs and cytokine production</td>
<td></td>
<td>26,29</td>
</tr>
<tr>
<td>OipA (HopH)</td>
<td>Adhesion to GECs ↑ IL-8 expression</td>
<td>↑ risk of duodenal ulcers and gastric cancer</td>
<td>26,30,31</td>
</tr>
<tr>
<td>IceA</td>
<td>encodes a restriction endonuclease</td>
<td>↑ risk of peptic ulcer</td>
<td>32,33</td>
</tr>
<tr>
<td>DupA</td>
<td>↑ IL-8 production</td>
<td>↑ risk of duodenal ulcers ↓ risk for cancer</td>
<td>34,35</td>
</tr>
<tr>
<td>NapA</td>
<td>neutrophil recruitment & production of ROS upregulation of IL-12, IL-23, TNF-α, IFN-γ</td>
<td></td>
<td>36-38</td>
</tr>
</tbody>
</table>

Alp = alkaline phosphatase; Bab = blood group antigen-binding; Cag = cytotoxin-associated antigen; CCL = cytosine-cytosine ligand (protein); Dup = duodenal ulcer perforation; GECs = gastric epithelial cells, Hop = Helicobacter outer membrane ponins; Hp = Helicobacter pylori; HSPs = heat shock proteins; Ice = IL-1beta-converting enzyme; IFN = interferon; IL = interleukin; LPS = lipopolysaccharide; MALT = mucosa associated lymphoid tissue; Nap = neutrophil-activating protein; Oip = outmembrane inflammatory protein; Ref = references; ROS = reactive oxygen species; SabA = sialic acid-binding adhesin A; SHP = Src homology 2 domain-containing tyrosine phosphatise; TNF = tumor necrosis factor; Vac = vacuolating toxin.
Helicobacter pylori has been shown to require flagella for infection of the stomach. Flagella allow the bacterium to swim across the viscous gastric mucus and reach the more neutral pH below the mucus.

Urease System
Helicobacter pylori synthesizes urease constitutively. As urease hydrolyses urea to form ammonia and carbon dioxide, and ammonia can absorb acid to form ammonium, it is natural to suspect that this dedication to make urease has a relation to survival and growth in the acidic environment of human stomach. There are data showing that the organisms do buffer their periplasm that lies between their inner and outer membrane, in acidic pH, using their intrabacterial urease activity.

Adhesins
Adhesins, such as blood group antigen-binding A (BabA), sialic acid-binding adhesin A&B (SabA&B) and outmembrane inflammatory protein A (OipA), which are helicobacter outer membrane proteins (Hops), enhance adhesion with gastric epithelial cells (GECs) by recognizing specific carbohydrate structures, such as the Lewis b blood group antigen and glycolipids having sialyl dimeric Lewis X, while other virulence factors facilitate Hp colonization and proliferation (Table 1).

Immune and Non Immune Response of Host Cellular Processes
Antibacterial Properties of the Human Stomach
The gastric epithelial layer constitutes a physical barrier that prevents entry of bacteria into the gastric mucosa. One of the most important antibacterial properties of the human stomach is its acidic pH, while multiple factors produced by the gastric mucosa such as antibacterial peptides are obstacles for Hp colonization and proliferation. In particular the antibacterial peptides produced by the gastric mucosa, β-defensins and lactoferrin, inhibit bacterial growth by restricting the availability of extracellular iron.

Acute Infection
Gastric biopsies performed 2 weeks after infection showed infiltration of lymphocytes and monocytes, along with significantly increased expression of IL-1β, IL-8, and IL-6 in the gastric antrum. Four weeks after infection, the numbers of gastric CD4+ and CD8+ T cells seem to increase compared to pre-infection levels, indicating the development of an early adaptive immune response. Either innate immune responses to Hp or early adaptive immune responses could account for the gastric mucosal inflammatory responses and symptoms that accompany acute infection (Fig. 1).

Chronic Infection
Gastric mucosal biopsies from humans who are persistently infected with Hp revealed an increased concentration of various types of leukocytes such as lymphocytes (both T cells and B cells), macrophages, neutrophils, mast cells and dendritic cells, compared to biopsies from uninfected humans, causing an inflammatory response called “chronic superficial gastritis”. Moreover, CD4+ T cells are typically more abundant than CD8+ T cells, while T regulatory cells expressing forkhead box P3 protein (FOXP3) are usually present in higher numbers playing an important role in regulating the inflammatory response. Various cell types, including B cells and CD4+ cells, sometimes organize into lymphoid follicles. The chronic gastric mucosal inflammatory response to Hp probably reflects the combined effects of a cellular immune response and an ongoing stimulation of an innate immune response associated with strong IL-12 production leading to a Th helper cell type 1 (Th1)-polarized response. Levels of numerous cytokines, including IFN-γ, TNF, IL-1β, IL-6, IL-7, IL-8, IL-10, and IL-18, are increased in the stomachs of Hp infected humans compared to uninfected humans. Helicobacter pylori infection always results in a strong immune response of the host against the infecting strain, but this response seldom (if ever) results in clearance of the infection.

Activation of the Innate Immune Response
Toll-like receptors recognize conserved microbial components, termed “pathogen-associated molecular patterns” (PAMPs), and play an important role in initiating innate immune responses to bacterial pathogens including Hp. Among the TLRs that recognize gram-negative bacteria, some of the most extensively characterized include TLR2 (which recognizes lipoproteins), TLR4 [gram-negative lipopolysaccharide (LPS)], TLR5 (flagellin), and TLR9 (bacterial CpG DNA motifs). Gastric epithelial cells (GECs) in the antrum and the corpus of the human stomach are reported to express TLR4, TLR5, and TLR9. Although TLR4 is involved in the induction of an immune response against Hp, TLR2 and TLR5, rather than TLR4, seem to be the predominant receptors for Hp antigen-induced NF-kB activation and chemokine expression in the GECs. However, compared to other gram-negative bacterial antigens, TLRs seem to play only a minor role in the induction of the innate immune response against Hp. After activation of TLRs, dendritic cells, in turn, activate T cells in different ways, being capable of inducing either a Th1 or Th2/regulatory T cell (Treg) response by generation of IL-12 or IL-10, respectively (Fig. 1). Toll-like receptors’ independent mechanisms seem to predominate in...
HELCOBACTER PYLORI INFECTION

Helicobacter pylori (Hp) is one of the most widely spread pathogens in humans. Mechanisms that allow Hp to cause a life-long infection involve modulation of the immune response and host cellular processes. The interaction between bacterial evasion that promotes long-term colonization. Helicobacter pylori also has the capacity to use cholesterol from its host and incorporate this into its membrane which could facilitate molecular mimicry. Moreover, Hp is capable of inhibiting phagocytosis by macrophages resulting not only in reduced anti-Hp activity of the macrophages but more importantly in decreased and altered processing of Hp antigens by activated macrophages.57,61-64

CONCLUSION

Helicobacter pylori (Hp) is one of the most widely spread pathogens in humans. Mechanisms that allow Hp to cause a life-long infection involve modulation of the immune response and host cellular processes. The interaction between bacterial evasion that promotes long-term colonization. Helicobacter pylori also has the capacity to use cholesterol from its host and incorporate this into its membrane which could facilitate molecular mimicry. Moreover, Hp is capable of inhibiting phagocytosis by macrophages resulting not only in reduced anti-Hp activity of the macrophages but more importantly in decreased and altered processing of Hp antigens by activated macrophages.57,61-64

FIGURE 1. Innate and adaptive immune response against Helicobacter pylori. Innate immune recognition of Helicobacter pylori (Hp), mediated in part through Toll like receptors (TLRs) such as TLR2, TLR4, TLR5, and TLR9, leads to the production of proinflammatory cytokines by macrophages, dendritic cells (DCs), mast cells and gastric epithelial cells (GECs). In addition, Hp peptidoglycan (PG) can be recognized by intracellular nucleotide-binding oligomerization domain (NOD) receptors such as NOD1. Production of interleukin 8 (IL-8) by GECs leads to recruitment of neutrophils (polymorphonuclear leukocytes [PMNs]), which can phagocytose opsonized bacteria and produce reactive oxygen species (ROS). Direct interactions between Hp and GECs or Hp constituents can also activate polymorphonuclear (PMN) cells and/or macrophages, which further amplifies the T-cell response to this pathogen. Dendritic cells can penetrate the epithelial barrier in vivo and sample Hp antigens directly, leading to an activation of T cells in different ways, being capable of inducing either a T helper 1 (Th1), or a Th2/regulatory T cell (Treg), response by generation of IL-12 or IL-10, respectively. The activation of mast cells results in degranulation and production of proinflammatory cytokines and chemokines.
effectors, environmental factors and factors that modulate the host’s response, have been shown to influence the clinical outcome of Hp infection either towards peptic ulcer and/or cancer. Future studies directed toward understanding interactions between Hp and immune cells in vivo may lead to the development of novel therapeutic approaches for eradication of Hp.

REFERENCES

