Atrial Flutter With 1:1 Atrioventricular Conduction and Profound Nonischemic ST Segment Depression

Sokratis Pastromas, MD, Dimitris Sakellariou, MD, Spyridon Koulouris, MD, Konstantinos Kappos, MD, Antonis S. Manolis, MD

ABSTRACT

A 60-year-old lady presented to the emergency room with breathlessness, palpitations, dizziness and hypotension. The ECG showed narrow QRS complex tachycardia at a rate of 300 beats/min and downsloping ST-segment depression. Following intravenous administration of adenosine, atrial flutter was confirmed and due to hemodynamic instability a direct current shock was delivered which restored sinus rhythm. The causes of such rapid ventricular rates in atrial flutter are discussed a propos with this case report.

INTRODUCTION

Atrial flutter with 1:1 atrioventricular (AV) conduction is commonly encountered in patients receiving class I antiarrhythmic drugs, like propafenone, disopyramide or quinidine, without concomitant intake of AV node blocking agents.1 On the other hand, this phenomenon is only rarely observed in patients not receiving this type of antiarrhythmic medications.2 Moreover, ST-segment depression is frequently observed during paroxysmal supraventricular tachycardias and there are clinical studies showing no association with coronary heart disease.3 We describe a case of a middle-aged woman who developed atrial flutter with 1:1 AV conduction and marked ST-segment depression on the surface electrocardiogram (ECG).

CASE REPORT

A 60-year-old lady presented to the emergency room with breathlessness, palpitations, dizziness and hypotension. The ECG showed narrow QRS complex tachycardia at a rate of 300 beats/min and downsloping ST-segment depression. Following intravenous administration of adenosine, atrial flutter was confirmed and due to hemodynamic instability a direct current shock was delivered which restored sinus rhythm. The causes of such rapid ventricular rates in atrial flutter are discussed a propos with this case report.
complex tachycardia at a rate of 300 beats per minute (bpm) with 2 mm downsloping ST-segment depression in leads I, II, III, aVF, V_2 – V_6 and 1 mm ST elevation in leads aVL and aVR (Fig. 1A). Following intravenous administration of 12 mg of adenosine, atrial flutter with rate of 300 bpm was noted (Fig. 1B). As the patient was hemodynamically unstable, a direct current shock at 70 Joules was delivered with successful conversion of the arrhythmia into sinus rhythm. The postconversion ECG revealed a short PR interval (Fig. 1C); no previous ECG recording was available for comparison. After cardioversion the patient’s blood pressure was stabilized and the symptoms abated.

One hour later, the ST segment deviation returned to normal (Fig. 1D), while the PR interval was persistently short. Furthermore, myocardial enzymes were normal. Cardiac ultrasound revealed no underlying cardiac abnormalities and the thyroid function tests were normal excluding hyperthyroidism. In order to rule out coronary heart disease, myocardial scintigraphy was performed 24 hours later. No evidence of myocardial ischemia was detected. The patient refused an electrophysiological study and she was discharged on medical therapy with beta – blocker plus diltiazem.

DISCUSSION

Atrial flutter is a relatively common arrhythmia in the general population characterized by an organized atrial rhythm with a rate typically between 250 and 350 bpm. Electrophysiological studies have shown that this simple ECG definition includes tachycardias using a variety of macro-reentry circuits. The usual ventricular response in atrial flutter is about 150 bpm (due to 2:1 AV conduction). However, under special circumstances, a 1:1 AV conduction has been noted, leading to rapid heart rates (up to 300 bpm) with hemodynamic consequences like syncope, hemodynamic collapse, angina pectoris, acute

![Figure 1](image-url)
Rapid Atrial Flutter

pulmonary edema and even sudden death, depending on the cardiac status of the individual patient.¹

This phenomenon has been noted since the 1950s in patients treated with a class I antiarrhythmic drug, in patients with Wolff-Parkinson-White syndrome with an accessory AV pathway bypassing the AV node and capable of rapid AV conduction, in hyperthyroidism, and in children.² It seems that a preexisting rapid AV nodal conduction could be a predisposing factor for the occurrence of a 1:1 AV conduction during atrial flutter in some patients. The presence of a short PR interval indicating enhanced AV nodal conduction on the surface ECG is a simple means to identify this characteristic.³ The increased P wave duration has also been associated with atrial arrhythmias.⁴ Rarely, has this degree of rapid ventricular response been reported in the absence of antiarrhythmic drug therapy or in patients with enhanced AV nodal conduction properties, previously termed the Lown-Ganong-Levine syndrome.⁵ In a retrospective study published by Kawabata et al, all patients who were suffering from atrial flutter with 1:1 AV conduction were receiving a class Ia, Ic or III antiarrhythmic drug and they had a significantly longer atrial flutter cycle length and more rapid AV nodal conduction time compared with those with atrial flutter without 1:1 AV conduction.⁶

In our patient, atrial flutter with 1:1 AV conduction was not associated with any apparent cause. Moreover, during the tachycardia remarkable ST-segment depression was noted without underlying true ischemia as evidenced by the absence of cardiac enzyme elevation and negative myocardial scintigraphy, essentially ruling out any significant underlying coronary heart disease. ST-segment depression is frequently observed during episodes of paroxysmal supraventricular tachycardias. From previous clinical studies it has been suggested that coronary artery disease is one but not the only mechanism causing these ECG repolarization abnormalities. Petsas et al performed an exercise treadmill stress test in 16 patients with noticeable ST segment depression during supraventricular tachycardia and they found that 94% of patients had no evidence of coronary artery disease.⁷ Moreover, Lin et al examined 51 patients with narrow QRS supraventricular arrhythmias and found that 51% of them developed repolarization changes during the tachycardia without evidence of coronary heart disease.⁸ In a prospective study, Androulakis et al did not find any strong association between transient ischemic type ST-segment depression during paroxysms of atrial fibrillation and underlying occult coronary artery disease.⁹

In conclusion, atrial flutter with 1:1 AV conduction must be suspected in case of a narrow QRS complex tachycardia with extremely rapid ventricular rate even in the absence of any antiarrhythmic drug intake. As atrial flutter is a macroreentrant tachycardia, radiofrequency catheter ablation may be considered to be an appropriate therapeutic modality, especially in patients with 1:1 AV conduction who cannot tolerate this rapid rhythm and present with syncope or presyncope and associated hemodynamic collapse.

References