BACKGROUND: We have recently identified a variant form of the human α_2B-adrenoceptor (AR) gene. Based on the coronary vasoconstrictive property of α_2-adrenoceptors in humans, we hypothesized that the naturally occurring D (deletion) variant confers reduced receptor desensitization and therefore increased vasoconstriction in humans. This property could be associated with cardiovascular pathologies such as acute myocardial infarction (AMI) and sudden cardiac death (SCD). To test this hypothesis, we carried out two separate clinical genetic studies in middle-aged Finnish men, reported in two separate original publications.

METHODS: We examined a subset (912 men, aged 46 to 64 years) of the Kuopio Ischeemic Heart Disease Risk Factor Study, an ongoing prospective population-based study investigating risk factors for cardiovascular diseases and related outcomes in men from eastern Finland (Prospective Follow-up study). Seven hundred out-of-hospital deaths of Finnish men in the Helsinki region were subjected to autopsy and formed the basis of the second, cross-sectional study investigating the associations between the α_2B-AR I/D polymorphism and coronary heart disease (Autopsy study). DNA for genotyping was extracted using standard methods. The α_2B-adrenoceptor insertion/deletion (I/D) genotypes were determined using PCR-amplification and DNA electrophoresis.

RESULTS: Of the 912 subjects, 192 (21%) had the D/D genotype, 256 (28%) had the I/I genotype, and 464 (51%) were heterozygous. Thirty-seven acute coronary events occurred during the follow-up time: 15 in the D/D genotype group (7.8%), 12 in the I/D group (2.6%), and 10 in the I/I group (3.9%). Using a univariate analysis, the risk for an acute coronary event differed significantly between the three genotype groups ($p=0.017$). The D/D genotype group had a 3-fold increased risk for an acute coronary event in comparison with the I/D group (95% CI=1.4–6.5, $p=0.004$), and a non-significantly increased risk of 1.9 relative to the I/I genotype group (95% CI=0.8–4.1, $p=0.128$). In a Cox proportional hazards’ model adjusting for several variables, the relative risk associated with the D/D genotype was 2.2 (95% CI=1.1–4.4, $p=0.02$). In the autopsy cohort, α_2B-AR I/D genotyping was accomplished for 683 men (98%). Of these, 152 (22%) had the D/D genotype, 186 (27%) had the I/I genotype, and 345 (51%) were heterozygous. The D/D genotype was associated with an increased risk for
CONCLUSION: the D variant of the α2B-AR gene is a causal risk factor for AMI and SCD in Finnish men. Further genetic epidemiological studies are still needed to confirm the causality and to test its generalization to other populations, and its physiological in vivo effects need to be identified.

MATERIALS AND METHODS

PROSPECTIVE FOLLOW-UP STUDY

We examined a subset of the Kuopio Ischemic Heart Disease Risk Factor Study, an ongoing prospective population-based study investigating risk factors for cardiovascular diseases and related outcomes in men from eastern Finland. This region is known for its homogenous population and high coronary morbidity and mortality rates. Our study was based on a representative population sample of 912 men, aged 46 to 64 years at the start of follow-up. All subjects gave their written informed consent. The average time of follow-up was 4.5 years (range 1 to 7.6 years).

To assess the occurrence of acute coronary events, diagnostic information was collected from the Finnish hospital discharge registry, which covers all inpatient admissions into all hospitals and district health centers in Finland. These data were classified by an internist using WHO MONICA criteria. An acute coronary event was defined as either as a definite acute myocardial infarction (AMI) or a possible AMI, based on...
ECG, clinical, laboratory or autopsy findings, or as an episode of acute chest pain of >20 min without diagnostic ECG or enzyme findings, but requiring hospitalization (prolonged chest pain). Only first events were analyzed; a subject was excluded from further analysis when an acute coronary event had occurred.

A U T O P S Y S T U D Y

Seven hundred out-of-hospital deaths of Finnish men in the Helsinki region were subjected to medico-legal autopsy and formed the basis of the second, cross-sectional study investigating the associations between the α_{2B}-AR I/D polymorphism and CHD. The material included all prehospital first-attack AMI deaths in the source population. The methods used in diagnosis of AMI, measurement of coronary narrowing and coronary atherosclerosis, and assessment of risk factors for CHD and SCD have been described.

D N A E X T R A C T I O N A N D A N A L Y S I S

DNA for genotyping was extracted using standard methods. The α_{2B}-AR insertion/deletion (I/D) genotypes were determined using PCR-amplification and DNA electrophoresis. Identification of the I and D alleles was based on their 9bp size difference. A few samples of each genotype were sequenced to confirm the PCR results. The region of interest was amplified using a sense primer 5'-AGG-GTG-TTT-GTG-GGG-CAT-CT-3' and an anti-sense primer 5'-CAA-GCT-GAG-GCC-GGA-GAC-ACT-3', yielding products sized 112 bp (I) and 103 bp (D). To prevent observer bias, the investigators who collected the clinical data were blind to the subjects' genotypes and the investigator who performed the genotyping was blind to all subject information. The genotyping result of each subject was insertion/insertion (I/I, which is a homozygous form of the recently discovered variant) or insertion/deletion (D/D, which is a homozygous form of the published α_{2B}-AR sequence), deletion/deletion (D/D, which is a homozygous form of the recently discovered variant) or insertion/deletion (I/D).

S T A T I S T I C A L A N A L Y S I S

To assess the possible association of the α_{2B}-AR I/D polymorphism with the risk for an acute coronary event in the follow-up study population, univariate Cox regression analysis was performed. Next, multivariate Cox regression analysis was performed to assess the impact of possible confounding factors on the observed association. Variables that were associated (p <0.10 in the above analyses) with the α_{2B}-AR I/D genotype were entered into a multivariate Cox regression model. The same procedure was performed for all variables that were previously identified as risk factors for CHD in this study population. The variables identified in these two models were entered together with all established major risk factors for CHD into a new multivariate Cox regression model. Logistic regression was used to analyze interactions between the α_{2B}-AR I/D variation and known risk factors for CHD. In the autopsy study, analyses of the effect of genotype on the odds of AMI with and without thrombosis, and comparisons between acute thrombosis cases and other SCD victims were based on logistic regression with and without the risk factor data. The interactions between genotype, age, and cause of death were also analyzed using logistic regression with Scheffe's post-hoc test.

R E S U L T S

Of the 912 subjects, 192 (21%) had the D/D genotype, 256 (28%) had the I/I genotype, and 464 (51%) were heterozygous.

Thirty-seven acute coronary events occurred during the follow-up time: 15 in the D/D genotype group (7.8%), 12 in the I/D group (2.6%), and 10 in the I/I group (3.9%). Of these 37 acute coronary events, 18 were classified as definite AMI, 12 as possible AMI and 7 as prolonged chest pain. Using a univariate Cox regression model, the risk for an acute coronary event differed significantly between the three genotype groups (p=0.017). The D/D genotype group had a 3.0 times increased risk for an acute coronary event in comparison with the I/D group (95% CI=1.4–6.5, p=0.004), and a non-significantly increased risk of 1.9 relative to the I/I genotype group (95% CI=0.8–4.1, p=0.128). The relative risk of the I/D genotype group was not significantly different from that of the I/I group (RR=0.6, 95% CI=0.3–1.4, p=0.251). We also applied the same analysis only to events classified as definite or possible AMI, excluding the prolonged chest pain category of the FINMONICA coronary event classification (30 events). In this analysis (overall p=0.002), the relative risk of the D/D group was significantly different from the I/D group (RR=4.1, 95% CI=1.8–9.3, p=0.0009) and the I/I groups (RR=3.1, 95% CI=1.2–8.0, p=0.02). The risk ratio between the I/D and I/I groups was not significantly different from unity (RR=0.8, 95% CI=0.3–2.1, p=0.6). These results suggest that the D allele confers its effect on the risk for coronary events in a recessive mode of inheritance.

In a univariate Cox regression model, the D/D genotype was associated with an acute coronary event risk of 2.5 (95% CI=1.3–4.8, p=0.006) relative to the combined I/D + I/I group. A Kaplan-Meier survival function of event-free time (Fig. 1) illustrates the consistent difference in incidence of acute coronary events in the D/D group compared to the I/D + I/I group. A Cox regression analysis limited to the definite or possible AMI cases, excluding the prolonged chest pain category, revealed a relative risk of 3.7 (95% CI=1.8–7.5, p=0.0006) for the D/D vs. the I/D + I/I group.

Eighty-seven variables were tested for their association with the α_{2B}-AR I/D polymorphism to explore possible confounding factors. The genotype groups were not different in
Only three variables were significantly different (p < 0.05) between the genotype groups. The D/D group had more acute coronary events. This group also had a slightly higher mean level of blood hemoglobin, and more common ischemic findings in exercise ECG and a lower mean four-day dietary cholesterol intake.

In addition, the \(\alpha_{2B}\)-AR I/D polymorphism was non-significantly (0.1 > p > 0.05) associated with BMI (I/I > D/D > I/D). Thus, the blood hemoglobin concentration, ischemic findings in exercise ECG, the mean four-day dietary cholesterol intake, and BMI were introduced into a Cox regression model together with the variables that were previously described as AMI risk factors in this study population. Out of these variables, hypertension, LDL cholesterol level, and family history of CHD were identified by this model as independent AMI risk factors.

In a Cox proportional hazards' model adjusting for age, serum LDL and HDL cholesterol levels, smoking, hypertension, BMI, diabetes, and family history of CHD, the relative risk associated with the D/D genotype was 2.2 (95% CI=1.1–4.4, p=0.02). The relative risk was 3.2 (95% CI=1.5–6.7, p=0.002) when the analysis was performed using only the definite and the probable AMI events (n=30). When only men with no history of CHD were included in the analysis, the adjusted relative risk associated with the D/D genotype was 2.2 (95% CI=1.0–5.0, p=0.06)\(^{16}\).

AUTOPSY STUDY

\(\alpha_{2B}\)-AR I/D genotyping was accomplished for 683 men (98%). Of these, 152 (22%) had the D/D genotype, 186 (27%) had the I/I genotype, and 345 (51%) were heterozygous. No differences (p >0.1) were found in major risk factors for CHD between the \(\alpha_{2B}\)-AR I/D genotype groups. Multivariate analyses revealed that coronary narrowing percentages and areas of atherosclerotic lesions were similar in the D/D and in the I/I + I/D genotype groups suggesting that variation in this genetic locus was not involved in the development of coronary atherosclerosis. The D/D genotype was associated with an increased risk for SCD and prehospital fatal AMI, with adjusted odds ratios (OR) of 1.8 - 2.4 compared to the other two genotypes (p <0.05). The I/D and the I/I genotypes were not different in respect to odds of SCD and AMI. When the data were analyzed assuming a recessive inheritance model, comparing the D/D genotype with the combined I/D + I/I genotypes, the D/D genotype again conferred an increased risk for SCD and AMI, especially for AMI without macroscopic thrombus (Table 1). The risks associated with the D/D genotype were considerably higher in a subpopulation of men who died suddenly before the age of 55.

DISCUSSION

Our prospective follow-up cohort study was the first to indicate that there is a strong statistical association between the D/D genotype of the \(\alpha_{2B}\)-AR and an increased risk for acute coronary events. Men with the D/D genotype had 2.5 times the risk to experience an acute coronary event relative to men with the I/D and the I/I genotypes, independently of other major risk factors for CHD.

Our autopsy-based study confirmed that the D/D genotype of the \(\alpha_{2B}\)-AR I/D variation is associated with an increased risk for AMI and SCD in Finnish men, especially in men who died before the age of 55. This association was largely due to the increased risk of the D/D genotype of non-thrombotic fatal prehospital AMI. Analysis of the coronary arteries revealed similar narrowing and other indices of atherosclerosis in the \(\alpha_{2B}\)-AR I/D genotype groups. The study thus suggested that the \(\alpha_{2B}\)-AR I/D polymorphism does not confer its increased risk for SCD and AMI through mechanisms directly related to progression of coronary atherosclerosis.

Our hypothesis that the D variant of the \(\alpha_{2B}\)-AR gene confers increased vasoconstriction is based on two premises: the impaired desensitization associated with the D variant, and the role of the \(\alpha_{2B}\)-AR subtype in vasoconstriction. The functional significance of this I/D polymorphism of the \(\alpha_{2B}\)-AR gene was investigated in an in vitro cell culture model, and the results indicated that the D variant conferred impaired receptor desensitization under prolonged agonist activation.\(^{15}\)

The assumption that the \(\alpha_{2B}\)-AR is critically involved in the regulation of vasoconstriction cannot be directly tested in vivo in humans, as subtype-selective \(\alpha_{2B}\)-AR drugs are not (yet) available. Studies in KO mice have clearly documented a prominent role for the \(\alpha_{2B}\)-AR in vasoconstriction.\(^{1}\) Even
if the perception of the \(\alpha_{2B}\)-AR subtype as an important mediator of vasoconstriction is based on studies in KO mice, the similar blood pressure responses to \(\alpha\)-AR agonists in humans and laboratory rodents\(^1\) suggest that the \(\alpha_{2B}\)-AR is a major mediator of vasoconstriction also in humans.

Augmentation in the constrictive properties of coronary arteries may be involved in the increased incidence of acute coronary events indirectly as the cause for intimal tearing leading to AMI or directly as in coronary artery spasm.\(^{23,24}\) Increased vasoconstriction may lead to increased ischemic findings and coronary events in the D/D group by at least two additional mechanisms: 1. decreased coronary blood flow due to increased vasoconstriction of small coronary arteries and by 2. increased total peripheral resistance, causing increased cardiac work load and oxygen demand.

Our analysis did not disclose a mechanism by which the D/D genotype confers an increased risk for SCD and AMI. However, taking into account the role of \(\alpha_{2B}\)-AR in vasoconstriction,\(^4\) and that rupture of atherosclerotic lesions can induce rapid and marked increases in distal vascular resistance due to severe microvascular vasoconstriction,\(^{25}\) our results may suggest that carriers of the D/D genotype are particularly prone to vasoconstriction in the vicinity of preexisting stenotic lesions in the epicardial coronary arteries or spasm of small-caliber coronary branches nourishing the subendocardium. These mechanisms may then contribute to the fatality of the ongoing coronary event.

CONCLUSIONS

The physiological functions of the \(\alpha_{2B}\)-AR subtype in mice, the impaired desensitization properties of the human D variant \textit{in vitro}, and our unbiased clinical genetic study designs and consistent results allow us to suggest that the D variant of the \(\alpha_{2B}\)-AR gene is a causal risk factor for AMI and SCD in Finnish men. Further genetic epidemiological studies are still needed to confirm the causality and to test its generalization to other populations, and its physiological \textit{in vivo} effects need to be identified. The lack of a proven \textit{in vivo} mechanism weakens the strength of the associations and necessitates further studies on the physiological effects of this genetic variant on the human cardiovascular system.

REFERENCES

